第9章 モンテカルロ法 341

9.3 モンテカルロ法の応用

<u>(1)重積分</u>

■考え方

面積計算へのモンテカルロ法の応用について前述しましたが,重 積分にも応用できます。多少の誤差は無視できるような問題の場合, 多次元になっても1次元とほぼ同じ手順で計算できます。

■例題

 $S = \int_{0}^{1} \int_{-1}^{2} \int_{1}^{3} xyz dx dy dz$

まず、以下のように置換して、区間 [0, 1] に正規化します。

x = 2p + 1, y = 3q - 1, z = r

これらを微分すると、dx = 2dp, dy = 3dq, dz = drですから、 $S = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 6(2p+1)(3q-1)rdpdqdr$

となります。そこで、乱数を発生させて、以下のように定積分を計 算します。

$$S' = \frac{1}{N} \sum_{i=1}^{n} 6(2p_i + 1)(3q_i - 1)r_i$$

表 9-8 に同手法によるプログラムを,図 9-5 にその結果を示します。

Function F(P, Q, R) As Double	Function 重積分表示用()
F = 6 * (2 * P + 1) * (3 * Q - 1) * R	Randomize
End Function	V = 0: $N = 100000$
Function 重積分()	With Worksheets("Sheet1")
Randomize	For i = 1 To N
V = 0: $N = 100000$	V = V + F(Rnd, Rnd, Rnd)
For i = 1 To N	If i Mod 100 = 0 Then
V = V + F(Rnd, Rnd, Rnd)	K = K + 1
Next	.Cells(K + 1, 1) = i
重積分 = V / N	.Cells(K + 1, 2) = V / i
End Function	End If
Sub ボタン 1_Click()	Next
MsgBox 重積分表示用()	End With
End Sub	重積分表示用 = V / N
	End Function

342 9.3 モンテカルロ法の応用

図 9-5 モンテカルロ法による重積分

(2)パーコレーション(Percolation:浸透)問題

■考え方

パーコレーション問題は,混合物質の電気伝導度推定,高分子ク ラスタ成長問題,森林火災鎮火時間推定などに適用される確率論的 モデルのひとつです。

ここでは、「絶縁粒子中に電導性粒子が何パーセントを占めると電 気伝導性を持つようになるか」という混合物質の電気伝導性の推定 問題をとりあげます。次のような手順で行います。

 ①すべてを絶縁粒子とする。
 ②乱数によって生成した X, Y を電導粒子で置き換える。すでに 電導粒子である場合は置き換えない。
 ③電気伝導性の判定を行う。

電気伝導性の判定は以下のような再帰的な手続きとなります。

①右側を超えたら成功とする。
②左および上・下を超えたら失敗とする。
③既に通過したセルであれば失敗とする。
④絶縁箇所であれば失敗とする。
⑤現セルを通過セルとして以下の試行を行う。
・右側に試行して,成功すれば終わる。
・下側に試行して,成功すれば終わる。
・上側に試行して,試行結果を値とする。

343 第9章 モンテカルロ法

■プログラム

表 9-9 混合物質の電気伝導性(その1)

```
Private Const N = 10
Private Const M = 10
Private A(N. M) As Byte: Private D(N. M) As Byte
Private Sub セル初期設定()
 For i = 1 To N: For j = 1 To M
  A(i, j) = 0
 Next: Next
End Sub
Private Sub セル設定() '乱数によるセル設定
 Do: X = Int(N * Rnd() + 1): Y = Int(M * Rnd() + 1)
 Loop Until A(X, Y) = 0
 A(X, Y) = 1
End Sub
Private Sub セル表示設定() 'シート名「結果」のシートを用意しておく
Application. ScreenUpdating = False
With Worksheets("結果")
 .Select
 For i = 1 To N
 For i = 1 To M
   .Cells(i, j) = ""
   If A(i, j) \Leftrightarrow 0 Then . Cells(i, j) = "\bullet"
 Next
 Next
End With
Application. ScreenUpdating = False
End Sub
Private Function 浸透() As Long
  Application. ScreenUpdating = False
  セル初期設定
  Randomize
  For i = 1 To 100
    セル設定
    If 判定() Then: 浸透 = i: Exit Function
   End If
  Next
  浸透 = 0
End Function
Private Function 方向判定(i, j) As Boolean
  If j > M Then:
                                    方向判定 = True
  Elself j < 1 Or i < 1 Or i > M Then: 方向判定 = False
  Elself D(i, j) \diamondsuit 0 Then:
                                   方向判定 = False
  Else
   D(i, j) = 1 ' 以前来たことがあることを示すフラグ
    If A(i, j) = 0 Then:
                                   方向判定 = False
    Else: 方向判定 = 方向判定(i, j + 1)
                                       i 正方向試行
         If 方向判定 Then Exit Function
         方向判定 = 方向判定(i, j - 1) ' j負方向試行
         If 方向判定 Then Exit Function
         方向判定 = 方向判定(i + 1, j) '
                                       i 正方向試行
         If 方向判定 Then Exit Function
         方向判定 = 方向判定(i - 1, j) ' i 負方向試行
    Fnd If
  End If
End Function
```

3449.3 モンテカルロ法の応用

表 9-9 混合物質の電気伝導性(その2)

Private Function 判定() As Boolean
For i = 1 To N
For j = 1 To M
$D(\bar{i}, j) = 0$
Next: Next
判定 = True
For i = 1 To N
If A(i, 1) <> 0 Then
S = 方向判定(i, 1):
If S Then Exit Function
End If
Next
判定 = False
End Function
Sub ボタン1_Click()
Application. ScreenUpdating = False
MsgBox 浸透(): セル表示設定
Application. ScreenUpdating = True
End Sub

■結果例

図 9-16(a)に結果例を示します。黒丸が電導粒子の箇所です。黒丸 をたどって、右側まで到着する経路が一つ以上あることを確認しま しょう。

図 9-16(b)は、同プログラムを VB6 に移行し、100×100 のメッシ ュで実行した例です。電導粒子の箇所を灰色で, 左から右まで電導粒 子をたどった経路を黒色で表示しています。

(a) VBA による結果例

図 9-6 混合物質の電気伝導性