4.6

プログラム例

- (1)シートの準備 まず、入力データや結果を格納する Excel シートを用意しましょう。本例では、以下のシートを用意します。なお、シート名は、そのシートに格納するデータの種類をそのまま付けることにします。
- ① **節点データ** 入力する節点データを指定します。シートには、以下のように、1行目は見出し、2行目以降にデータを入力します。A列に節点番号、B列に座標値、C列に変位境界条件がある場合 0以外の値、D列にその変位を入力します。E列には、力学的境界条件である外力を入力します。また、プログラムを実行するための「計算」ボタンを貼り付けておきましょう。ボタンの貼付け方法は、「3.1 行列の加減算と乗算【VBAを使って行列の加算プログラムを作成】」を参照してください。

	А	В	С	D	Е	F	G	
1	節点番号	座標値	拘束条件	変位	節点力			
2	0	0	1	0	0		計算	
3	1	4		0	0		可升	
4	2	8		0	0			
5	3	10		0	0			
6	4	12		0	2000			
7								
H A	_ ▶ M\応力)	 <u> 節点データ</u>	/要素データ	/節点変位/	(全体剛性行	列/	<	

② 要素データ 入力する要素データを指定します。シートには、以下のように、1行目は見出し、2行目以降にデータを入力します。A列に要素番号、B列、C列にその要素を構成する節点番号、C列に要素の断面積、D列にヤング率を入力します。

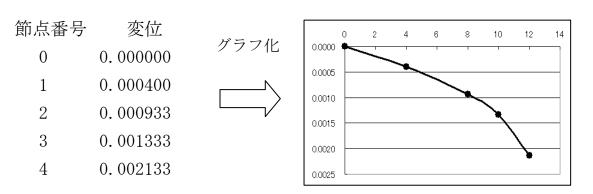
	А	В	С	D	Е	F
1	要素番号	構成節点0	構成節点2	断面積	ヤング率	
2	0	0	1	50	400000	
3	1	1	2	50	300000	
4	2	2	3	50	200000	
5	3	3	4	50	100000	
6						
7						
ia≘a	_ ▶ M 応力。	/節点データ)	 要素データ	/節点変位 /	/全体剛性行	列 /

List 4-7 全体剛性行列の設定

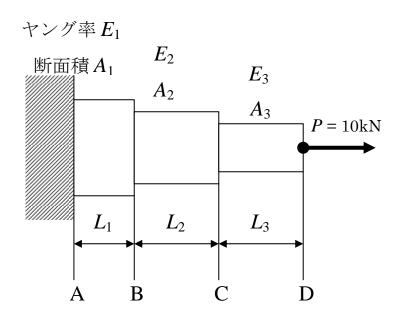
```
Sub setTotalMatrix() '全体剛性行列の設定
For i = 0 To NumberOfNode - 1 '初期設定
For j = 0 To NumberOfNode - 1
    TotalMat(i, j) = 0
Next: Next
For k = 0 To NumberOfElement - 1 '要素剛性行列の加算
For i = 0 To 1
    For j = 0 To 1
        ii = Elm(k).Node(i): jj = Elm(k).Node(j)
        TotalMat(ii, jj) = TotalMat(ii, jj) + Elm(k).Kmatrix(i, j)
Next: Next
Next
End Sub
```

(9)**変位境界条件の設定** 変位境界条件による右辺の変形,全体剛性行列の変更を行います(式(4.54)参照)。

List 4-8 変位境界条件の設定


```
Sub setBoundaryCondition() '境界条件の設定
 For i = 0 To NumberOfNode -1
   If Node(i). NodeCond <> 0 Then '拘束条件がある場合のみ以下の処理
     Disp = Node(i).Disp
                             '変位量取出し
     For j = 0 To NumberOfNode - 1 '等価節点荷重を右辺に加える
       Node(i).Force = Node(j).Force - TotalMat(j, i) * Disp
                             '対応する非対角要素=0
       TotalMat(j, i) = 0
       TotalMat(i, j) = 0
     Next
     '対応する対角要素= 1
   End If
 Next
End Sub
```

```
List 4-9 全体剛性行列を保存
```


```
Sub saveTotalMatrix() '全体剛性行列をシートに保存With Worksheets("全体剛性行列")
For i = 0 To NumberOfNode - 1
For j = 0 To NumberOfNode - 1
.Cells(i + 2, j + 2) = TotalMat(i, j)
Next: Next
End With
End Sub
```

4.6 プログラム例

(15)実行例 「(1)シートの準備」で示した節点データ、要素データで計算した例を示します。「計算」ボタンをクリックした後、「節点変位」シートには以下のようなデータが設定されています。X 軸を横軸にして変位をグラフ化すると右図のようになります。

【課題 4-1】以下のような段つき棒に引張荷重 P = 10 [kN] が加わるとき、各点の変位と、各部材に生ずる応力を、サンプルの有限法プログラムを用いて求めなさい。なお、それぞれの数値については下表を参照しなさい。

_(表)	部材 1	部材 2	部材 3	
E_i (GPa)	200	150	100	
A_i (mm ²)	400	300	200	
L_i (mm)	100	150	150	